2025
Son, D., Bae, J., Park, C., Song, J., & Chung, S. (2025). Capillary flow profile analysis on paper-based microfluidic chips for classifying astringency intensity. Sensors, 25(16), 5068.
Kim, J.-S. G., Chung, S., Ko, M., Song, J., & Shin, S. H. (2025). Comparison of image preprocessing strategies for convolutional neural network-based growth stage classification of butterhead lettuce in industrial plant factories. Applied Sciences, 15(11), 6278.
Son, D., Lee, S., Jeon, S., Kim, J. J., & Chung, S. (2025). Classifying storage temperature for mandarin (Citrus reticulata L.) using bioimpedance and diameter measurements with machine learning. Sensors, 25(8), 2627.
2024
Son, D., Park, J., Lee, S., Kim, J. J., & Chung, S. (2024). Integrating non-invasive VIS-NIR and bioimpedance spectroscopies for stress classification of sweet basil (Ocimum basilicum L.) with machine learning. Biosensors and Bioelectronics, 263, 116579.
Kim, J. S. G., Moon, S., Park, J., Kim, T., & Chung, S. (2024). Development of a machine vision-based weight prediction system of butterhead lettuce (Lactuca sativa L.) using deep learning models for industrial plant factory. Frontiers in Plant Science, 15, 1365266.
Chung, S. (2024). Machine learning–assisted flow velocity analysis in paper microfluidics. In J.-Y. Yoon & C. Yu (Eds.), Machine learning and artificial intelligence in chemical and biological sensing (pp. 275–291). Elsevier. [Book]
2023
Campos, R. L., Yoon, S.-C., Chung, S., & Bhandarkar, S. M. (2023). Semisupervised Deep Learning for the Detection of Foreign Materials on Poultry Meat with Near-Infrared Hyperspectral Imaging. Sensors, 23(16), 7014.
Chung, S., Loh, A., Jennings, C. M., Sosnowski, K., Ha, S. Y., Yim, U. H., & Yoon, J. Y. (2023). Capillary flow velocity profile analysis on paper-based microfluidic chips for screening oil types using machine learning. Journal of Hazardous Materials, 447, 130806.
2022
Chung, S., Breshears, L. E., Gonzales, A., Jennings, C. M., Morrison, C. M., Betancourt, W. Q., Reynolds, K. A., & Yoon, J.-Y. (2022). Appendix A: Single virus copy per μL level detection of norovirus in water samples on paper microfluidic chip with smartphone-based fluorescence microscope. In Rapid and low-cost paper-based lateral flow assays for detection of liquid-borne pathogens (p. 32). University of Arizona. [Book]
2021
Chung, S., & Yoon, S. C. (2021). Detection of foreign materials on broiler breast meat using a fusion of visible near-infrared and short-wave infrared hyperspectral imaging. Applied Sciences, 11(24), 11987.
Chung, S., Breshears, L.E., Gonzales, A. et al (2021). Norovirus detection in water samples at the level of single virus copies per microliter using a smartphone-based fluorescence microscope. Nat Protoc 16, 1452–1475.
2019
Lee, K., Park, H., Baek, S., Han, S., Kim, D., Chung, S., ... & Seo, J. (2019). Colorimetric array freshness indicator and digital color processing for monitoring the freshness of packaged chicken breast. Food Packaging and Shelf Life, 22, 100408.
Chung, S., Jennings, C. M., & Yoon, J. Y. (2019). Distance versus capillary flow dynamics‐based detection methods on a microfluidic paper‐based analytical device (μPAD). Chemistry–A European Journal, 25(57), 13070-13077.
Chung, S., Breshears, L. E., Perea, S., Morrison, C. M., Betancourt, W. Q., Reynolds, K. A., & Yoon, J. Y. (2019). Smartphone-based paper microfluidic particulometry of norovirus from environmental water samples at the single copy level. ACS Omega, 4(6), 11180-11188.
Chung, S. (2019). Portable device based optical sensors For water related environmental monitoring. University of Arizona, Ph.D. Dissertation
Before 2019
Chung, S., Breshears, L. E., & Yoon, J. Y. (2018). Smartphone near-infrared monitoring of plant stress. Computers and Electronics in Agriculture, 154, 93-98.
Chung, S., Park, T. S., Park, S. H., Kim, J. Y., Park, S., Son, D., ... & Cho, S. I. (2015). Colorimetric sensor array for white wine tasting. Sensors, 15(8), 18197-18208.
Son, D., Park, S. H., Chung, S., Jeong, E. S., Park, S., Yang, M., ... & Cho, S. I. (2014). Correlations between the growth period and fresh weight of seed sprouts and pixel counts of leaf area. Journal of Biosystems Engineering, 39(4), 318-323.
© BSLAB All Rights Reserved
Lab of Biosensors and Agricultural Electronics (바이오센서 및 농업전자 연구실) @ Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea (08826)
TEL : (+82) 2-880-4606 | FAX : (+82) 2-873-2049
Office : Bldg.200 Rm 2217